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Abstract

We present a novel distributed reinforcement learning ar-
chitecture for cryptocurrency token search deployed in
production. Our approach addresses the unique chal-
lenges of crypto search where token popularity changes
rapidly, duplicate tokens exist, and user preferences vary
significantly. By employing client-side Upper Confidence
Bound (UCB1) strategy selection with distributed genetic
algorithm evolution, we achieve real-time learning with
minimal computational overhead. The system operates
entirely client-side with comprehensive fallback mecha-
nisms, enabling sub-100ms ranking decisions while con-
tinuously adapting to user feedback through evolution
triggered during navigation events. Production results
demonstrate evolved strategies achieving up to 95% av-
erage reward, significantly outperforming baseline ap-
proaches. The implementation processes 6-dimensional
feature vectors encompassing market metrics and veri-
fication status, with genetic evolution producing supe-
rior strategies through real user interactions. This work
demonstrates the practical viability of distributed RL sys-
tems for real-time search optimization in volatile domains
and establishes a new paradigm for client-side evolution-
ary algorithms in production environments.

1 Introduction

The explosive growth of cryptocurrency markets has cre-
ated an information retrieval challenge where traditional
search ranking methods fail to adapt to rapidly changing
token dynamics. Unlike conventional web search where
document relevance remains relatively stable, cryptocur-
rency token search presents unique characteristics that
render traditional approaches inadequate:

Rapid Market Dynamics: Token popularity and
market metrics can shift dramatically within hours during
market events, while traditional ranking systems typically
retrain on weekly or monthly cycles, creating significant
lag in relevance adaptation.

Data Sparsity: With over 30,000 new tokens
launched daily in the memecoin ecosystem, the majority
of search targets have minimal historical data for tradi-
tional ML training, yet users must make time-sensitive

decisions about these nascent assets.

Duplicate Token Problem: Numerous tokens share
similar names, symbols, or branding (often intention-
ally), requiring disambiguation strategies that traditional
keyword-based ranking cannot effectively handle.

Aggregation Complexity: Startups face significant
challenges collecting and integrating diverse data sources
(market data, social signals, on-chain metrics) required
for traditional model training, while RL systems can learn
directly from user interactions.

Traditional ranking approaches that optimize for long-
term static relevance are inadequate for this domain.
While recent work by Hu et al. [I] demonstrated the effec-
tiveness of reinforcement learning for e-commerce search
through Search Session Markov Decision Processes (SS-
MDP), their approach requires complex state modeling
and policy gradient methods unsuitable for lightweight
client-side deployment. Inspired by both the RL survey
of Zhao et al. [2] and the multi-step ranking insights
from Alibaba’s work, we implement a simplified multi-
armed bandit (MAB) system that achieves similar adap-
tation benefits while maintaining practical deployment
constraints.

Our contributions are:

e A novel distributed client-side evolution architecture
where genetic algorithms run during user navigation,
enabling real-time strategy improvement

e A lightweight UCB1-based ranking system that op-
erates client-side with sub-100ms latency

e A production-grade A/B testing infrastructure with
deterministic user assignment and comprehensive
fallback mechanisms

e A 6-dimensional feature engineering approach com-
bining market metrics with verification signals

e Empirical validation on a live cryptocurrency search
platform showing evolved strategies achieving up to
95% average reward (on our 0-1 positional reward
scale; see Reward Function)



2 Problem Formulation

2.1 Multi-Armed Bandit Framework

We formulate the token search ranking problem as a
multi-armed bandit where each arm represents a differ-
ent ranking strategy. Following the definition from [2]:

A K-armed bandit for token search is a tuple (A, R, )
where:

e A={aj,as,...,ax} is the set of ranking strategies

(arms)

e R: A—|[0,1] is the (unknown) expected reward for
each arm

e 7 is the bandit policy that selects arms based on
historical feedback (e.g., UCB1)

Each ranking strategy a; is characterized by a weight
vector w; € RS that defines the importance of six fea-
tures:

Ww; = [wwallet57 Wtrades) Wmeapr Wliquidity » Wvolume wveriﬁed]

where 2521 w;; =1 and w; ; > 0 for all j.

2.2 Feature Engineering

Our 6-dimensional feature space addresses correlation is-
sues present in raw market data through careful engineer-
ing:

Core Market Features:

Jwallets = logo(unique_wallets_24h + 1)
Jtrades = log;(trade_24h + 1)
fmcap = log;o(market_cap + 1)
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Verification Signal:

1.0
fveriﬁed = {

if token is verified

0.0 otherwise

The logarithmic transformation normalizes the heavy-
tailed distribution of market metrics while preserving rel-
ative ordering. This approach reduces the correlation be-
tween highly correlated raw features (e.g., volume and
market cap often correlate at r > 0.8).

2.3 Reward Function

User selection position determines the reward signal:

1.0  if p =0 (perfect hit)
07 ifp=1
0.5 ifp=2
r(p) =403 ifp=3
02 ifp=4
015 ifp=5
01 ifp>6

This reward structure provides strong signals for top
positions while maintaining non-zero rewards for lower
positions to enable learning from suboptimal selections.

Relation to IR Metrics. Our position-based reward
r(p) is a monotonically decreasing gain by rank, akin
to assigning fixed gains in discounted cumulative gain
(DCG). In the absence of explicit relevance labels, this
choice encourages high precision at top ranks while still
learning from lower positions. When judgment data
is available, one can (a) calibrate r(p) to approximate
DCG/NDCG gains and (b) report the correlation be-
tween average bandit reward and standard IR metrics
(e.g., NDCG@k or MRR) to validate alignment. In our
production setting, we prioritize fast online learning and
treat full IR-metric calibration as future work.

3 Methodology

3.1 Candidate Generation (Retrieval)

Our system follows a standard retrieval-and-reranking de-
sign. At query time we first obtain a candidate list of
tokens from a semantic/fuzzy search API provided by a
market-data provider (e.g., BirdeyeEI). This maps a free-
form query to token identifiers and returns a small set of
likely matches (typically tens to low hundreds, depend-
ing on provider limits). We apply light sanity filters (e.g.,
deduplication by contract address and verification checks)
but do not learn or modify this retrieval stage. All learn-
ing occurs in the subsequent re-ranking stage: the ban-
dit selects a scoring strategy that orders this provider-
returned candidate set. In other words, the RL compo-
nent ranks candidates; it does not perform retrieval.

3.2 UCBI1 Strategy Selection

We employ the Upper Confidence Bound algorithm
(UCB1) for strategy selection, which balances exploration
and exploitation [3]:

2Int
n;(t)

where 7;(t) is the average reward for strategy ¢ up to
time ¢, n;(t) is the number of times strategy i has been

UCB;(t) = i(t) +

Thttps://birdeye.so
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selected, and ¢t = Z]K:1 n;(t) is the total number of selec-
tions.
The strategy selection policy chooses:

UCB;(t)

a® = arg max
i€{l,...K}

Handling Drift. In highly non-stationary settings,
Sliding-Window UCB or Discounted UCB are drop-in re-
placements for UCB1 to better track drifting rewards,
trading off bias and responsiveness [12].

3.3 Genetic Algorithm Evolution

To discover improved ranking strategies, we implement
genetic algorithm evolution with the following compo-
nents:

Parent Selection: Tournament selection with tour-
nament size 3, selecting parents based on average reward
with a penalty for strategies with insufficient data (< 10

pulls).
Crossover: Single-point crossover generating off-
spring:
. w 117 lfj <c
Weninalj] = P [.] L
Wparcnt2[j] lfj 2 c

where c is a randomly selected crossover point.
Mutation: Gaussian mutation with rate 0.2 and
strength 0.1:

w'[j] = max(0.01, w[j] + N(0,0.1))

Normalization: Ensure weights sum to 1:

w/
Wfinal = 6

Zj:l w[j]

Evolution triggers during user navigation events when:
(1) total interactions > 50, (2) best strategy has > 20
pulls, and (3) > 100 interactions since last evolution.
The distributed nature means evolution occurs organi-
cally during active user sessions, with probabilistic prun-
ing (5-10% chance) removing poor performers to main-
tain strategy diversity.

4 Implementation

4.1 Distributed Client-Side Architecture

Our implementation introduces a novel distributed evo-
lution approach that operates entirely client-side while
maintaining system-wide learning;:

Client-Side Processing: All ranking computations
occur in the browser using TypeScript, eliminating server
round-trips for real-time ranking. Strategy selection, fea-
ture engineering, and ranking computation complete in
under an estimated 70ms.

Distributed Evolution: Unlike traditional server-
side batch evolution, our genetic algorithm runs client-
side during user navigation events. When users navigate
to token pages, the system probabilistically triggers evo-
lution, creating new strategies through crossover and mu-
tation of high-performing parents. This distributed ap-
proach ensures evolution occurs when users are actively
engaged with the system.

Evolution Computational Efficiency: The
lightweight nature of our 6-dimensional genetic al-
gorithm makes client-side execution optimal.  Core
operations include tournament selection (O(K) where
K < 20 strategies), single-point crossover (O(6) opera-
tions), Gaussian mutation (O(6) operations), and weight
normalization (O(6) operations). The entire genetic
algorithm completes in under 1ms, making network
round-trips for server-side evolution 50-200x more
expensive than local computation.

Event-Driven Evolution Triggers: Evolution oc-
curs organically during user navigation rather than on
fixed schedules. The system evaluates three conditions:
(1) total interactions > 50, (2) best strategy has > 20
pulls, and (3) > 100 interactions since last evolution. This
ensures evolution happens when sufficient statistical sig-
nificance exists and users are actively engaging with the
system.

Distributed Load Characteristics: Each client per-
forms minimal computational work (< lms genetic al-
gorithm execution) distributed across navigation events.
This approach eliminates server-side computational bot-
tlenecks while maintaining natural evolution timing
aligned with user activity patterns. The distributed na-
ture scales linearly with user base growth.

Database Persistence: Persistent storage maintains
strategy definitions and performance statistics, user feed-
back interactions for learning, and A /B testing validation
metrics. The system gracefully handles database failures
with comprehensive fallback mechanisms.

Atomic Updates: Bandit arm statistics are updated
atomically through database functions ensuring consis-
tency via a 5-step process: (1) fetch current statistics, (2)
calculate new totals, (3) increment pull count, (4) com-
pute new average, and (5) atomically update the strategy
record.

4.2 Anti-Gaming Measures

To prevent manipulation, we implement several protec-
tive mechanisms:

User Rate Limiting: Time-weighted rewards with
diminishing returns:

T'weighted = Traw Xmax (0.1, 1.0/(1.0+interactions_todayx0.1))

Strategy Pruning: Remove consistently poor per-
formers: - Keep minimum 5 strategies - Prune evolved
strategies performing < 70% of average with > 50 pulls -
Preserve original baseline strategies



4.3 Production A/B Testing Infrastruc-
ture

To validate bandit effectiveness, we implement a sophis-
ticated A/B testing framework:

Deterministic User Assignment: Users are deter-
ministically assigned to bandit or baseline ranking based
on a hash of their user ID, ensuring consistent experience
across sessions and devices. This avoids the variance is-
sues common in random assignment systems.

Graceful Degradation: The system includes com-
prehensive fallback mechanisms. If bandit arms cannot
be loaded, the system automatically falls back to base-
line ranking. If database operations fail, local caching
maintains functionality. Strategy selection failures trig-
ger immediate fallback to predetermined weights.

Health Monitoring: Real-time monitoring tracks
system health ratios, fallback frequency, and performance
metrics, enabling rapid detection of issues in production.

4.4 Performance Characteristics

Latency: Strategy selection: < 5ms, ranking computa-
tion: < 50ms for 100 tokens, genetic algorithm evolution:
< 1lms

Client-Side Computational Load: The distributed
approach minimizes per-client overhead: tournament se-
lection processes < 20 strategies, crossover operates on
6-dimensional vectors, and mutation applies Gaussian
noise to 6 weights. Total genetic algorithm operations:
O(K + 6) = 26 simple operations per evolution event.

Network Efficiency: Client-side evolution eliminates
the need for evolution-specific API calls. Network usage
is limited to: initial strategy load ( 2KB), interaction
logging ( 500 bytes), and new strategy persistence ( 200
bytes when evolution occurs). This compares favorably to
server-side approaches requiring round-trips for evolution
checks (50-200ms latency overhead).

Memory: Client-side state: < 1MB, database growth:
1KB per interaction

Scalability: Linear scaling with user base growth.
Each additional user contributes distributed compu-
tational capacity while evolution frequency remains
bounded by statistical significance requirements.

5 Production Deployment & Re-
sults

5.1 Strategy Performance

Our initial deployment includes 6 baseline strategies and
has evolved 12 additional strategies through genetic al-
gorithms. Table [I| shows performance metrics from real
production use with actual users making token selection
decisions.

Key Findings:

Table 1: Strategy Performance Summary

Strategy Type  Avg Reward Pulls Gen
Baseline 0.861 23 N/A
Evolved Gen-5 0.955 20 5
Evolved Gen-8 0.940 15 8

e Evolved strategies consistently outperform baselines

e Gen-5 strategies demonstrate the strongest perfor-
mance with sufficient data (95.5% average reward)

e Gen-8 strategies maintain strong performance with
reduced variance

e Weight evolution shows convergence toward
verification-heavy strategies (25-35% allocation)

5.2 Weight Evolution Analysis

Figure [I] shows the evolution of strategy weights across
generations, revealing clear convergence patterns:

Verification Convergence: Evolved strategies show
consistent trend toward verification emphasis: 24.2%
(Baseline) — 30.1% (Gen-5) — 32.2% (Gen-8), correlat-
ing with performance improvements.

Activity Optimization: Wallet and trade weights
stabilize around 23% and 19% respectively in Gen-8, sug-
gesting optimal balance for user selection prediction.

Market Metrics Reduction: Evolution reduces em-
phasis on raw market cap (11.8% — 8.7% — 11.9%) and
liquidity (6.8% — 3.6% — 6.9%), indicating these fea-
tures are less predictive than activity signals.

Performance Correlation: The increasing verifica-
tion focus directly correlates with performance improve-
ments: 76.5% — 85.6% — 88.5% average reward across
generations.

5.3 Latency Analysis

Client-side ranking maintains low latency: strategy se-
lection (3-8ms), feature engineering (15-25ms for 100 to-
kens), ranking computation (20-35ms), totaling 38—68ms.
Database operations occur asynchronously: interaction
logging (150-300ms) and strategy updates (50-150ms),
both non-blocking.

6 Discussion
6.1 Comparison with E-commerce RL

Approaches

Our lightweight approach differs significantly from prior
e-commerce RL work, particularly Hu et al.’s SSMDP
framework [I]. Related online learning-to-rank and slate
methods include cascading and click-model bandits [7, ],
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Figure 1: Weight evolution across generations showing increasing verification focus and corresponding performance
improvements. Left: Stacked bar chart of weight distributions. Right: Verification weight vs. average performance

trend.

diversity-aware ranked bandits [9], combinatorial semi-
bandits for whole-page recommendation [10], and slate
RL decompositions [I1]:

Simplified State Space: While SSMDP models com-
plex user session states and multi-step decision processes,
our MAB approach treats each search as an independent
arm selection problem, avoiding state modeling complex-
ity.

Deployment Constraints: SSMDP requires server-
side policy gradient computations and complex state
transitions, whereas our approach operates entirely client-
side with minimal computational overhead.

Domain Adaptation: E-commerce sessions benefit
from modeling sequential purchases and long-term user
journeys, while crypto search prioritizes rapid adaptation
to market volatility over session continuity.

Data Requirements: SSMDP approaches require
substantial historical session data for training, while
our system learns effectively from minimal initial data
through UCBI1 exploration.

Despite these architectural differences, both ap-
proaches validate the core insight that RL provides sig-
nificant advantages over traditional ranking methods in
dynamic search environments.

6.2 Client-Side Evolution Advantages

Our distributed client-side evolution architecture pro-
vides several key advantages over traditional server-side
approaches:

Computational Efficiency: For lightweight genetic
algorithms operating on small parameter spaces (6 dimen-
sions), client-side execution eliminates network latency
bottlenecks. The genetic algorithm’s O(K + d) complex-
ity where K < 20 strategies and d = 6 dimensions results
in < lms execution time, while network round-trips in-

troduce 50-200ms overhead.

Natural Load Distribution: Evolution computa-
tion distributes across the user base, with each client
contributing minimal processing power during navigation
events. This eliminates server-side computational bottle-
necks and scales linearly with user growth.

Event-Driven Timing: Unlike fixed-schedule batch
evolution, our approach triggers evolution during actual
user engagement. This ensures new strategies are gener-
ated when users can immediately benefit from improved
rankings, creating a tight feedback loop between user ac-
tivity and system optimization.

Elimination of Coordination Overhead: Client-
side evolution avoids the complexity of distributed server
coordination, job scheduling, and resource management
required by traditional batch processing approaches.

Serverless-Friendly Deployment. Modern frontend
platforms (e.g., Vercel) default to serverless compute and
CDN caching. A client-side bandit/evolution loop is sim-
pler to ship and operate in this model, since it:

e avoids server-side cache coherence/invalidation and
per-user/session caching strategies,

e sidesteps cold-start latency and stateful coordination
in serverless functions, and

e reduces additional infrastructure (custom caches, in-
memory stores) otherwise needed to keep server-side
ranking fresh without serving stale/poisoned cache
entries.

State persists in the database, while selection and evo-
lution execute in the browser, making deployment and
scaling straightforward on serverless stacks.



6.3 Domain-Specific Advantages

Our approach is particularly well-suited to cryptocur-
rency search due to:

Rapid Adaptation: UCB1 adapts to changing to-
ken popularity within hours rather than days or weeks
required by traditional ML retraining [12].

Real-time Learning: Every user interaction imme-
diately influences future rankings, enabling responsive
adaptation to market events.

Multi-dimensional Optimization: The 6-feature
space captures both market fundamentals and trust sig-
nals crucial for crypto users.

Duplicate Handling: By learning user preferences
for verification and activity metrics, the system naturally
improves disambiguation between similar tokens.

6.4 Production Validation

Unlike laboratory simulations, our system operates un-
der real-world constraints with actual users making conse-
quential decisions. The distributed evolution architecture
provides several advantages over traditional approaches:
(1) evolution occurs during peak user engagement, (2)
computational load is distributed across user sessions,
and (3) strategy improvements happen when users can
immediately benefit from enhanced rankings.

6.5 Scalability Considerations

The lightweight architecture scales favorably: client-
side processing distributes computational load, database
growth is linear (~1KB per interaction), strategy evolu-
tion is periodic rather than continuous, and A/B testing
enables controlled rollout.

6.6 Limitations

While our approach addresses many challenges in crypto
search, several limitations warrant consideration:

Feature Correlation: Despite log-transformation
and derived feature engineering, some correlation per-
sists between market metrics (e.g., volume and market
cap), potentially reducing the independence of our 6-
dimensional feature space and limiting the genetic algo-
rithm’s ability to discover truly orthogonal optimization
directions.

Limited Contextual Awareness: The current sys-
tem treats each search independently without considering
query intent classification, user search history, or session
context. This prevents personalization and may miss op-
portunities to adapt rankings based on whether users are
exploring new tokens versus searching for specific known
assets.

Feature Space Constraints: Our 6-dimensional ap-
proach, while lightweight, may miss important signals
such as social sentiment, on-chain activity patterns, or

temporal market trends that could enhance ranking qual-
ity, particularly for emerging tokens in volatile market
conditions.

Evaluation Bias: If we evaluate or iterate on policies
offline using logged interactions, counterfactual /unbiased
learning-to-rank and off-policy evaluation are required to
correct for position and selection bias [14] [I5].

Trust
Safety: While we employ rate limiting, pruning, and
deterministic A/B assignment to reduce gaming and in-
stability, risks remain (e.g., Sybil attacks, surfacing low-
quality or deceptive tokens). We mitigate by emphasizing
verification signals, monitoring anomalies, and retaining
graceful fallbacks.

7 Future Work

7.1 Enhanced Feature Engineering
Additional dimensions could capture:

e Temporal patterns: Recent trend direction, mo-
mentum indicators

e Social signals: Twitter mentions, sentiment scores,
community size

e Technical indicators: Price volatility, volume pro-
file, liquidity depth

e Ecosystem metrics: DEX listing count, holder dis-
tribution, transaction patterns

7.2 Contextual Bandits (Future Work)

Evolution toward contextual bandits could incorporate
[6]:

Query intent classification (exploration vs. specific
search)

User behavior patterns and preferences
e Temporal context (market hours, news events)
e Portfolio correlation and risk metrics

Practical note: linear contextual methods (e.g., LinUCB)
remain lightweight and are compatible with our client-
side and serverless deployment constraints.

7.3 Deep RL Integration

Future work could explore:

e Neural bandit policies for complex feature interac-
tions

e Reinforcement learning for query understanding

e Multi-objective optimization balancing relevance, di-
versity, and trust



e Transfer learning between similar token ecosystems

Given tight latency budgets and serverless execution
models, we defer deep RL to future iterations where on-
device inference or hybrid server/client training can be
justified.

8 Conclusion

We presented a production deployment of a distributed,
client-side bandit system for cryptocurrency token search,
achieving sub-100ms ranking with continuous adaptation
from real user interactions. Our architecture evolves
strategies in the browser during navigation events, provid-
ing a practical alternative to server-side batch evolution.

The UCB1-based bandit with lightweight genetic evolu-
tion delivers strong outcomes (up to 95% average reward
on our positional scale), aided by robust fallbacks and
deterministic A/B assignment. The approach scales nat-
urally on serverless stacks, and the 6-dimensional feature
space captures the domain’s key signals.

Looking ahead, we plan to (i) introduce drift-aware
UCB variants as drop-in replacements, (ii) explore lin-
ear contextual bandits for personalization within our la-
tency /footprint budget, and (iii) evaluate deeper RL in-
tegration where justified. We believe this client-side
paradigm generalizes to other dynamic ranking problems
that demand real-time adaptation without heavy infras-
tructure.
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